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12 Abstract. Chemical weathering of silicate rocks of low-latitude arc—continent collisions has been hypothesized as a
13 driver of global cooling since the Neogene. In low-latitude regions, monsoon and tropical cyclone precipitation also
14 drive intense physical erosion that contribute to terrestrial carbon export and nutrient-stimulated marine productivity.
15 Despite this, the role of physical weathering on carbon sequestration has largely been overlooked. To address this gap,
16 we analyse late Miocene—carly Pleistocene sedimentary and geochemical records from the Taiwan Western Foreland
17 Basin and time-equivalent records from the northern South China Sea.

18 Along the continental slope, organic carbon is largely marine in origin, and its accumulation controlled by long-term
19 sea-level fall and glaciation. In contrast, on the continental rise, organic carbon burial is controlled by high
20 sedimentation rates related to Taiwan’s uplift and erosion (since ~5.4 Ma). Despite increased terrestrial erosion of
21 Taiwan, the organic material remains mainly marine in origin, suggesting that primary production was enhanced by
22 nutrient exported from Taiwan. Marine organic matter along Taiwan’s shore was subsequently remobilized by
23 turbidity currents through submarine canyon systems and accumulating on the continental rise of Eurasia. The onset
24 of Northern Hemisphere Glaciation (~3 Ma) and subsequent intensification of the East Asian Summer Monsoon and
25 persistent tropical cyclone activity all further amplified nutrient export across the basin, further stimulating marine
26 primary production.

27 Our findings demonstrate that arc—continent collision influences carbon sequestration through two pathways: (1) direct
28 burial of terrestrial organic matter and (2) nutrient-fuelled marine productivity and burial. This work establishes a

29 direct link between the erosion of an arc-continent collision and long-term carbon burial in adjacent ocean basins.

30 1 Introduction

31 Global cooling since the late Eocene has traditionally been attributed to tectonic forcing and enhanced chemical
32 weathering of silicate rock from the Himalayan and Tibetan Plateau (Raymo and Ruddiman, 1992), which results in
33 the removal of atmospheric CO, (Walker et al., 1981). However, weathering fluxes have decreased in both regions
34 during the Neogene (Clift and Jonell, 2021), and global silicate fluxes appear to have remained near steady-state

35 through the Cenozoic (Caves et al., 2016) even as global cooling continued. To reconcile stable or declining chemical
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36  weathering rates with decreasing atmospheric CO,, an alternative hypothesis emphasized chemical erosion of arc-
37 continent collisional orogens in low-latitude, tropical regions (Bayon et al., 2023; Clift et al., 2024; Jagoutz et al.,
38 2016; Macdonald et al., 2019). In such environments, warm and humid conditions amplify chemical weathering,
39 enhancing carbon removal and sequestration. While existing studies support a correlation between the growth and
40  weathering of low-latitude orogens and long-term atmospheric CO, concentration and global temperature records,
41 they have yet to fully account for the roles of physical erosion, terrestrial organic carbon burial, and changes in marine
42 productivity.

43 In low-latitude regions, tropical cyclones and monsoons are the primary drivers of erosion and sediment dispersal,
44 delivering elevated sediment loads to adjacent seas via intense precipitation and high river discharge from steep
45 mountainous catchments (Chen et al., 2018; Milliman and Kao, 2005). Warm sea-surface temperatures and reduced
46 polar ice volumes under past greenhouse climates likely amplified monsoon variability and produced tropical cyclones
47 that were considerably more intense and frequent than at present (Fedorov et al., 2013). These conditions of elevated
48 humidity and precipitation would have promoted not only enhanced chemical weathering of silicate rocks, but also
49 greater terrestrial biomass production.

50 Land-to-sea export of terrestrial organic material from vegetation, soil, and rock is enhanced under high precipitation
51 regimes, with steep mountain rivers efficiently transporting this material for burial in adjacent ocean basins (Hilton et
52 al., 2011; Milliman et al., 2017). The global terrestrial carbon pool accounts for ~7.5% of the Earth’s total carbon
53 stock, excluding lithospheric carbon, and is more than five times larger than the atmospheric carbon pool (Canadell et
54 al., 2021). As a result, even modest changes in the terrestrial carbon storage can significantly alter atmospheric CO»
55 concentrations (Houghton, 2003). In particular, physical erosion by water is widely recognized as a dominant control
56 of land—atmosphere carbon exchange (Hilton and West, 2020; Van Oost et al., 2012). Elevated sediment discharge to
57 the oceans would facilitate the export and burial of terrestrial organic carbon (Aumont et al., 2001; Dagg et al., 2004;
58 Galy et al., 2007; Hilton et al., 2011; Jin et al., 2023; Liu et al., 2013), and also deliver bioessential nutrients that
59 stimulate marine productivity (Beusen et al., 2016; Diirr et al., 2011; Hoshiba and Yamanaka, 2013; Krumins et al.,
60  2013). However, the role of fluvial nutrient export in fueling marine primary productivity is generally thought to be
61 limited to coastal regions (Dagg et al., 2004; Froelich, 1988; Stepanauskas et al., 2002). This oversimplification in
62  ocean biogeochemical models leads to a poorly constrained link between terrestrial nutrient supply, open-ocean
63 productivity, and deep-sea carbon burial.

64 This research aims to address these knowledge gaps by disentangling the different mechanisms through which carbon
65 is sequestered as a result of low-latitude arc-continent collisions (Fig. 1). A clearer understanding of these processes
66  will provide stronger constraints on both reconstructed and predictive carbon budget models. The study area focuses
67 on the northern South China Sea (SCS) region, specifically late Miocene to early Pleistocene (~6.3—2 Ma) strata of
68 the Taiwan Western Foreland Basin (TWFB, i.e., paleo-Taiwan Strait; Fig. 2) and time-equivalent sediment core
69 records obtained from the Ocean Drilling Program (ODP Sites 1146 and 1148; Fig. 2). Since its emergence in the
70 early Pliocene, Taiwan has been characterized by exceptionally high denudation rates and rapidly became the
71 dominant sediment source to the adjacent TWFB, overwhelming contributions from southeast Eurasia (Hsich et al.,

72 2023b). Hyperpycnal flows triggered by intense precipitation transported Taiwan-derived sediments over 1000 km
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into the SCS, leaving a distinct signature in deep-sea deposits (Hsieh et al., 2024; Liu et al., 2012). Strata of the TWFB
capture the evolution of the Taiwan Orogen (Lin and Watts, 2002), and thus provide insight into how changes in

weathering and erosion processes modulated carbon burial in the SCS sediments across successive orogenesis stages.
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Figure 1: Conceptual model of geologic carbon (C) sources and sinks, modified from (Berner, 2003). This research focuses
on two main pathways of carbon sequestration often associated with arc-continent collisions, highlighted in blue: (1) direct
burial of terrestrial organic matter, and (2) nutrient-fueled marine productivity followed by the burial of marine organic
matter. These processes play a crucial role in the long-term carbon cycle and the regulation of atmospheric CO2.

2 Study area

The base of the TWFB stratigraphic fill is composed of the Kueichulin Formation (Fm; late Miocene—early Pliocene),
a sandstone-dominated unit deposited in shallow-marine and deltaic environments under the influence of wave and
tidal processes, and composed of three members (from base to top): the Kuantaoshan Sandstone, Shihliufen Shale,
and Yutengping Sandstone (Fig. 2; Castelltort et al., 2011; Hsieh et al., 2025; Nagel et al., 2013). Overlying the
Kueichulin Fm is the Chinshui Shale (late Pliocene), a mudstone-rich succession with uncommon wavy-laminated
sandstone interbeds that accumulated in an offshore setting during a phase of maximum flooding and enhanced
subsidence in the TWFB (Castelltort et al., 2011; Nagel et al., 2013; Pan et al., 2015). The Chinshui Shale is overlain
by the Cholan Fm (early Pleistocene), which consists of heterolithic sediments deposited in shallow-marine
environments influenced by waves, rivers, and tides (Covey, 1986; Nagel et al., 2013; Pan et al., 2015; Vaucher et al.,
2023a).

The targeted time interval (~6.27-1.95 Ma) spans the initiation of Eurasian-Philippine plate collision through the
mergence and uplift of Taiwan. It includes the Pliocene (5.33-2.58 Ma), which may be the most recent time in Earth’s
history when atmospheric CO last reached or exceeded present-day concentrations (>400 ppm; Tierney et al., 2019),
and the subsequent transition toward Pleistocene icehouse conditions. Since tectonic configurations, insolation, and
major floral and faunal assemblages have remained broadly unchanged since the mid-Pliocene (Dowsett, 2007;
Robinson et al., 2008), this period provides a critical Earth system analog for evaluating future climate hazards (e.g.,

Burke et al., 2018), including sea-level rise and extreme weather events.
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100 Figure 2: A) Map of the study area showing the locations of the Late Miocene—Early Pleistocene records from Ocean Drilling
101 Program (ODP) sediment cores in the South China Sea, and the outcrop of the Kueichulin Fm from the Taiwan Western
102 Foreland Basin (TWFB). The inset map outlined in blue show the locations of the borehole (HYS-1) and outcrop locations
103 (DRK =Da’an River, Kueichulin Fm; TRC = Tachia River, Chinshui Shale) of the TWFB strata used in this study. Modern-
104 day circulation in the SCS is shown in arrows: black = alongshore surface current, red = surface water current, green =
105 intermediate water current, yellow = deep- and bottom-water current, pink = Kuroshio current, pink (dashed) = Taiwan
106 warm current (modified from Hu et al. (2010); Liu et al. (2010a); Liu et al. (2016); Yin et al. (2023)). B) Chronostratigraphy
107 of the TWFB is modified after Chen (2016), Hsieh et al. (2023a), and Teng et al. (1991). The red box highlights the targeted
108 study section. Yellow denotes sandstone, and grey indicates mudstone.

109 3 Methodology
110 3.1 Data acquisition and analysis

111 A total of 553 samples were collected from outcrops of the TWFB exposed along rivers in southwestern Taiwan,
112 including 272 collected from the Kueichulin Fm by Dashtgard et al. (2021) and Hsieh et al. (2023b) along the Da’an
113 River. This was combined with new data from the Chinshui Shale (n=90; Tachia River) and the Cholan Fm (n=191;
114  Houlong River). Data between 4.13-3.15 Ma are not available as no outcrop sections were accessible. Gamma-ray
115 data were obtained from the HYS-1 borehole drilled through the TWFB. Age-equivalent material was also obtained
116 from deep-sea sediment cores ODP Site 1146 (19°27.40°N, 116°16.37°E, 2092 m water depth, 179.8-343.1 m core
117 depth; Holbourn et al., 2005; Holbourn et al., 2007) and Site 1148 (18°50.169°N, 116°33.939’E, 3294 m water depth,
118 118.9-206 m core depth; Cheng et al., 2004; Tian et al., 2008), archived in international core repositories. Sampling
119 resolution averaged ~1.4 m vertically through the TWFB stratigraphic sections, and ~0.65 m and ~0.35 m through the
120 ODP Sites 1146 and 1148 cores, respectively.

121 Samples from the Chinshui Shale and ODP sites were analysed for organic geochemistry and paleomagnetism. For
122 the Chinshui Shale, total organic carbon (TOC) and total nitrogen (TN) concentrations were determined from
123 pulverized rock samples in the Department of Geosciences at National Taiwan University (NTU) using an elemental
124 analyser (Elementar TOC analyser soli TOC® cube; Lin et al., 2025). Total carbon (TC) and TN abundances for ODP
125 samples were determined with a CHNS Elemental Analyser (Thermo Finnigan Flash EA 1112) at the Institute of Earth
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126 Sciences (ISTE) at the University of Lausanne in Switzerland on oven-dried sieved and crushed sediment samples.
127 The samples were heated to 900°C, after which the combustion products were extracted into a chromatographic
128 column where they were converted into simpler components: CO, and N,. These components were then measured by
129 a thermal conductivity detector, and the results were expressed as a weight percentage. Analytical precision and
130 accuracy were determined by replicate analyses and by comparison with an organic analytical standard composed of
131 purified L-cysteine, achieving a precision of better than 0.3% (REFS). Organic matter (OM) analyses of ODP core
132 samples were performed on whole-rock powdered samples using a Rock-Eval 6 at the ISTE following the method
133 described by Espitalie et al. (1985) and Behar et al. (2001). Measurements were calibrated using the IFP 160000
134 standard. Rock-Eval pyrolysis provides parameters such as hydrogen index (HI, mg HC g! TOC, HC = hydrocarbons),
135 oxygen index (OI, mg CO; g! TOC), Ty (°C), and the TOC (wt.%). HI, OI and T, values, which give an overall
136 measure of the type and maturation of the organic matter (e.g., Espitalie et al., 1985), can't be interpreted for TOC <
137 0.2 wt.% and S>values > 0.2 mg HC g”'. Total organic carbon accumulation rates (mg cm™ kyr™) for the ODP sites
138 were calculated by multiplying mass-accumulation rates (MAR) derived from literature and TOC.

139 Organic carbon isotopic compositions (3'*Corg, %o relative to Vienna Pee Dee Belemnite) were measured by flash
140 combustion on an elemental analyser (EA) coupled to an isotope-ratio mass spectrometer (IRMS) from pulverized,
141 decarbonated (10% HCI treatment) whole-rock samples. Samples from ODP sites were analysed at the Institute of
142 Earth Surface Dynamics, University of Lausanne, using a Thermo EA IsoLink CN connected to a Delta V Plus isotope
143 ratio mass spectrometer (Thermo Fisher Scientific, Bremen), both operated under continuous helium flow. The
144 samples and standards are weighed in tin capsules and combusted at 1020°C with oxygen pulse in a quartz reactor
145 filled with chromium oxide (Cr,0O3) and below with silvered cobaltous-cobaltic oxide. The combustion produced gases
146 (CO2, N2, NOy and H,O) are carried by the He-flow to a second reactor filled with elemental copper and copper oxide
147 wires kept at 640°C to remove excess oxygen and reduce non-stoichiometric nitrous products to N». The gases are
148 then carried through a water trap filled with magnesium perchlorate (Mg(ClO4)). The dried N> and CO, gases are
149 separated with a gas chromatograph column at 70 °C and then carried to the mass spectrometer. The measured §'3C
150  values are calibrated and normalized using international reference materials and in-house standards Spangenberg,
151 2016. Samples from the Chinshui Shale were analysed at the Stable Isotope Laboratory at National Taiwan University
152 using a Flash EA (Thermo Fisher Scientific) coupled to a Delta V Advantage (Thermo Fisher Scientific). The §'3C
153 values are calibrated using an international reference material, IAEA-CH-3. The reproducibility and accuracy are
154 better than +0.1%o.

155 Thirty-three oriented palacomagnetic core specimens (25-mm diameter) were collected at ~3.5 m intervals from
156  unweathered, mud-rich beds, then prepared and analysed at Academia Sinica in Taiwan following the methodology
157 described in Horng (2014). Cores were cut into 2-cm samples, and bulk magnetic susceptibility measured using a
158 Bartington Instruments MS2B magnetic susceptibility meter. Mass-specific magnetic susceptibility (y) was then
159 derived by normalising bulk magnetic susceptibility to sample mass.

160 Existing data for the ODP sites 1146 and 1148 were also compiled from literature, including clastic MAR (Site 1146
161 from Wan et al., 2010a, Site 1148 from Wang et al., 2000a), magnetic susceptibility (1146 from Wang et al., 2005a,
162 1148 from Wang et al., 2000a), hematite/goethite ratios (Hm/Gt) derived from spectral reflectance band ratios at
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565/435 nm (1146 from Wang et al., 2000b, 1148 from Clift, 2006), continuous gamma-ray logs (1146 from Wang et
al., 2000b, 1148 from Wang et al., 2000a), and titanium/calcium ratios (Ti/Ca; 1146 from Wan et al., 2010a, 1148
from Hoang et al., 2010). MAR, magnetic susceptibility, and Ti/Ca serve as proxies for physical erosion, recording
variations in terrigenous sediment flux linked to summer monsoon precipitation. Intensified precipitation enhances
basin sediment accumulation rates (Clift et al., 2014), and typically increases the magnetic susceptibility of marine
sediment via enhanced runoff and terrestrial input (Clift et al., 2002; Kissel et al., 2017; Tian et al., 2005). In the SCS,
magnetic susceptibility also serves as a sediment provenance indicator. Sediment sourced from western Taiwan yields
x values that range from 0.9 + 0.3 to 1.8 + 0.5 x10”7 m® kg'!, much lower than those sourced from the South China
Block (4.0 +1.3 X107 m? kg™, indicating a relative depletion of magnetic minerals in Taiwan-sourced material (Horng
and Huh, 2011). Titanium, associated with heavy mineral deposition, and calcium, linked to pelagic biogenic
carbonate accumulation, yield Ti/Ca values that increase with enhanced monsoon-driven sediment export (Clift et al.,
2014). Gamma-ray intensities broadly track changes in lithology (Green and Fearon, 1940; Schlumberger, 1989),
where values < 75 American Petroleum Institute (API) typically mark sandstone-rich intervals, > 105 API mudstone-
rich intervals, and intermediate values reflect mixed lithologies. Increased sediment export, particularly of coarser
grains, may be expressed as lower API values.

Sedimentary TOC content provides a measure of organic carbon accumulation through time. Terrestrial and marine
sources can also be differentiated by their §'*Cor, values (Chmura and Aharon, 1995; Dashtgard et al., 2021; Hilton et
al., 2010; Martiny et al., 2013; Peterson and Fry, 1987). Marine organic matter (e.g., plankton, particulate and
dissolved organic matter) typically have more enriched values than terrestrial inputs (e.g., C3 and C4 plants, and soil
and lithogenic organic carbon) (Table 1). Marine-derived organic matter mainly accumulates on the seafloor under
fair-weather conditions, while terrestrial input increases under intervals of increased precipitation and erosion
(Dashtgard et al., 2021; Hsieh et al., 2023b).

Table 1: Typical values for marine- and terrestrially sourced 3!*Corg and C/N (compiled by Dashtgard et al., 2021). Numbers
in brackets represent sample count. OM = organic material.

Organic Material 3Corg (%o0) C/N
Particulate OM -22.5+ 1.7 (53) 6.2+1.0
9 Plankton -20.4+ 1.4 (184) -
=
§ Dissolved OM -22.5+0.8 (23) -
- High-13C plants (C4) 13.241.9 (89) 83.3 = 54 (6)
é Low-'3C plants (C3) 27.4+19(161) 52+ 14.8 (55)
5
2 Soil 259+12(11) 17.1+£7.3 (22)
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188 Hematite-to-goethite (Hm/Gt) ratios are widely applied as indicator of monsoon precipitation (Clift, 2006; Liu et al.,
189 2007; Zhang et al., 2009). Hematite typically forms through iron oxidation under arid climates, whereas goethite
190 preferentially develops under humid climates (e.g., Kdmpf and Schwertmann, 1983; Maher, 1986). In the northern
191 SCS, however, Clift et al. (2014) documented a positive relationship between elevated Hm/Gt values and intensified
192 East Asian Summer Monsoon (EASM) rainfall and seasonality. Beyond climate, hematite also reflects sediment
193 provenance: sediment derived from Taiwan is notably depleted in hematite and enriched in pyrrhotite (Hormg and
194 Huh, 2011). Locally estimated scatterplot smoothing (LOESS) is applied to all data to reveal trends through the studied
195 time interval (Cleveland et al., 1992).

196 3.2 Age models

197 The chronostratigraphic framework for the Kueichulin Fm, Chinshui Shale, and and Cholan Fm of the TWFB was
198 established by astronomically tuning the gamma-ray records to the §'*0 record of Wilkens et al. (2017) (Hsich et al.,
199 2023a; Vaucher et al., 2023b). However, the boundary between the top of the Kueichulin Fm and the base of the
200 Chinshui Shale is not well-established. Therefore, a magnetobiostratigraphic age model was developed from
201 nannofossil zones and magnetic reversals identified in oriented outcrop core samples from the Chinshui Shale outcrop
202 using the methodology described in Horng (2014) to ground-truth the existing framework. The remanent magnetic
203 intensity, and declination and inclination of oriented core samples were measured using a JR-6A spinner
204 magnetometer (AGICO). To determine the stable remanent magnetization and polarity (i.e., normal or reversed) of
205 each sample, unstable secondary magnetization was removed by thermally demagnetizing the samples stepwise from
206 25 to 600°C. The characteristic remanent magnetization (ChRM) declination and inclination of thermally
207 demagnetized samples were calculated using principal component analysis with a minimum of three demagnetization
208 steps in the PuffinPlot software (Lurcock and Wilson, 2012) to determine the polarity of each sample. Thermal
209 demagnetization diagrams for the Chinshui Shale samples showing the stable remanent magnetic declinations and
210 inclinations after principal component analysis are presented in Fig. S1 in Supporting Information.

211 Index nannofossils and corresponding biozonations identified by Shea and Huang (2003) for the Chinshui Shale were
212 used to constrain paleomagnetic polarities. The resulting age model was then correlated to an orbitally tuned, benthic
213 foraminiferal, stable oxygen isotope (5'%0) record from the equatorial Atlantic Ocean (Wilkens et al., 2017), which is
214 tied to physical sedimentary properties independent of ice volume, and has a robust timescale. Variations in both
215 parameters are assumed to be causally linked and temporally in phase.

216 The age model for ODP Site 1146 (Wan et al., 2010a) was constructed by linear interpolation between
217 magnetobiostratigraphic age control points established by Wang et al. (2000b). Stratal ages from ODP Site 1148 (Clift,
218 2006) are constrained using biostratigraphic ages of benthic foraminifera (Wang et al., 2000a).

219 4 Results

220 Data collected from the Chinshui Shale (n = 90) for this study have average TOC values (0.3 £ 0.1%) comparable to
221 the those of the Shihliufen Shale (0.3 £+ 0.03%, n = 31), but are higher than the basal Kuantaoshan Sandstone (0.2 £
222 0.1%, n =9), and lower than the Yutengping Sandstone (0.4 + 0.1 %, n = 216) and the Cholan Fm (0.4 £+ 0.7%, n =
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223 191; Fig. 3). C/N and 3'3Corg values of the Chinshui Shale (5.2 + 0.7 and -24.5 = 0.7%o, respectively) indicate stable
224 accumulation of marine organic content, similar to the Shihliufen Shale (5.3 = 0.4 and -24.2 + 0.4%o) in contrast to
225 the Kuantaoshan Sandstone (6.1 + 0.3, -23.4 + 0.3%o), Yutengping Sandstone (8.5 £ 1.8, -26.5 £ 0.5%o), as well as the
226 overlying Cholan Fm (6.3 + 4.1, -25.7 + 0.8%o), which records enhanced terrestrial input (Fig. 3). The accumulation
227 of marine organic matter is also stable through the Shihliufen Shale and the Chinshui shale, with greater variability
228 between ~4.9—-4 Ma, and after ~2.3 Ma (Fig. 3).
Taiwan Westem Foreland Basin (TWFB)
I 1
TOC (%) CIN 3"C,,, (%o Gamma Ray (API) Sea Level (m)
0 025050075 10 5 10 15 20-28-27-26-25-24-23 40 60 80 100120 100 50 0
201 | ¢ Y. B 3 2 ;
§ 52 Long-term
o | 1=z
25 i sea level
s0| 2]t
Ole SN\ - R - — SPSNS] By AR
35
Short-term
sea level
a0lE
= g
2
45 |§
g
=
501 2
55
k
6.0
229 m  Organic layer (OL)
230 Figure 3: Compilation of total organic carbon (TOC), C/N, 8'3Corg, and gamma ray data for the Taiwan Western Foreland
231 Basin (TWFB), including the Kueichulin Fm (Dashtgard et al., 2021; Hsieh et al., 2023a; Hsieh et al., 2023b), the Chinshui
232 Shale (this study and gamma-ray from Vaucher et al. (2023b)), and the Cholan Fm (this study and gamma-ray from
233 Vaucher et al. (2023b)). Sea-level curves are from Haq and Ogg (2024). “>” indicates data that plot outside of the diagram.
234 The solid lines represent curves fitted using locally estimated scatterplot smoothing (LOESS). TOC, C/N, and 8'*Corg trends
235 reflect organic carbon sources, and show that marine organic matter content is high in the Kuantaoshan Sandstone,
236 Shihliufen Shale, and Chinshui Shale, contrasting with increased terrestrial input in the Yutengping Sandstone and Cholan
237 Formation. Gamma-ray data indicate lithological variability, and correlate with sea-level changes.
238 At ODP Site 1146 (Fig. 4), MAR (n=59) and TOC (n = 225) values remain relatively stable until ~3.3 Ma (averaging
239 1.2+0.2 gcm2kyr! and 0.08 + 0.03%, respectively), after which both increase, with a maximum MAR of 3.5 cm™



https://doi.org/10.5194/egusphere-2025-5268
Preprint. Discussion started: 6 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

240  kyr', and maximum TOC of 0.3%, accompanied by greater TOC variability. This is reflected in the TOC accumulation
241 rate (n = 225), which shows increasing trends also since ~3.3 Ma, from an average of 9.6 (£ 3.7) x 10 to 3.7 (+ 1.8)
242 x 107 mg cm? kyr. §"*Corg (n = 113) show a gradual decrease from ~5.7-4 Ma from an average of -21.8 (+ 0.4) to -
243 22.2 (£ 0.6)%o, then stabilises. Magnetic susceptibility (n = 2747) increases through the record from an average of
244 ~1.6 (£0.4)t0 2.5 (x1) x 10° m® kg™ from 5-3 Ma, with accelerated increase after ~3 Ma. Hm/Gt ratios (n = 8196)
245 decrease gradually from ~4.75-3 Ma (from an average of 0.56 + 0.3 to 0.35 = 0.1), before showing greater amplitude
246 variability. Gamma-ray values (n = 2551) remain relatively stable (16.2 + 3.3 API) until ~3.2 Ma with when both
247 values and amplitudes rise (26.7 + 5.7 API). The Ti/Ca record (%/%, n = 53) shows an overall decreasing trend from
248 ~4.6 Ma—3.5 Ma from an average of 1.5+ 0.07 to 1.2 £ 0.1.

249 At ODP Site 1148 (Fig. 4), MAR values (n = 15) remain stable with a slight increase at ~5.5 Ma from an average of
250 1.4 (£0.009) to 1.6 (= 0.2) g cm?kyr"!, followed by a sharper increase near ~3.5 Ma to a maximum of 3.5 g cm2kyr-
251 1. TOC values (n = 220), as well as TOC accumulation rates (n = 220), are stable from ~6.27-4.7 Ma (averaging 0.08
252 +0.01% and 1.1 (+ 0.2) x 10 mg cm™ kyr, respectively. Both TOC and TOC accumulation rates increase from
253 ~4.7-4.5Mato 0.11 (£ 0.01)% and 1.9 (+ 0.3) x 10 mg cm™ kyr'!, then stabilize until ~3.5 Ma, and then increased
254 again (exceeding 0.2% and 5 x 10 mg cm? kyr, respectively) with greater amplitude. MAR, TOC, and TOC
255 accumulation rates also exceed values measured from Site 1146 since ~4.7 Ma by 20-60%. §'3Corg (n = 110) is broadly
256 stable, increasing near ~2.75 Ma from an average of -23.2 (£ 0.3) to -22.8 (+ 0.4)%o. Magnetic susceptibility values
257  (n=1249) show a gradual increase from ~5.4-4.3 Ma from an average of 3.6 (= 0.6) to 4.9 (+ 0.8) x 10~ m3 kg"!, then
258 a decrease until ~3.5 Ma to an average of 4.6 (+ 1.2) x 10 m? kg'!. The values remain low after ~3.5 Ma, with
259 amplitudes deceasing after ~2.75 Ma. Hm/Gt (n = 1678) declines from ~5.4-4.6 Ma from an average of 0.61 (£ 0.08)
260 to 0.2 (£ 0.06), then stabilizes and slightly increases from ~3.2-2.9 Ma. Gamma-ray values (n = 1249) are high from
261 ~5.4-4.9 Ma, averaging 29.5 (+ 3.8) API, then decrease and stabilize before rising again after ~3.5 Ma to an average
262 of 35 (£ 4.2) API. The Ti/Ca ratios (cps/cps, n = 646) increase overall from ~5.4 Ma, from an average of 0.07 (+ 0.03)
263 to 0.16 (£ 0.1), with increasing amplitude variability.
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265 Figure 4: Compilation of sediment core data from ODP Sites 1146 and 1148 in the northern South China Sea, including
266 mass accumulation rate (MAR; Wan et al., 2010a; Wang et al., 2000a), TOC and 8'3Corg (this study), mass-specific magnetic
267 susceptibility (y; Wang et al., 2000a; Wang et al., 2005a), hematite/goethite (Hm/Gt; Clift, 2006; Wang et al., 2000b), gamma
268 ray (Wang et al., 2000a, 2000b), and Ti/Ca (Hoang et al., 2010; Wan et al., 2010a). Sea-level curves are from Haq and Ogg
269 (2024). “>” indicates data that plot outside of the diagram. The solid lines represent curves fitted using locally estimated
270 scatterplot smoothing (LOESS). The figure illustrates the contrasting sedimentary and geochemical responses between the
271 two ODP sites, driven by tectonic uplift, climate variability, and changes in ocean circulation.

272 5 Discussion

273 5.1 Spatial variability in sediment provenance and distribution in the northern South China Sea

274  Provenance exerts a first-order control on sedimentary records in the SCS, owing to the region’s complex geology and
275 active tectonism, which channel sediment contributions from multiple major rivers (e.g., Clift et al., 2014; Clift et al.,
276 2022; Horng and Huh, 2011; Kissel et al., 2016, 2017; Liu et al., 2009b; Liu et al., 2007; Liu et al., 2010b; Liu et al.,
277 2016; Milliman and Syvitski, 1992; Wan et al., 2010c). During most of the Neogene, the Pearl River supplied the
278 dominant sediment flux to the northern SCS (Clift et al., 2002; Li et al., 2003). The emergence of the Taiwan orogen
279 in the early Pliocene fundamentally reorganised this system: by ~5.4 Ma, and especially after ~4.9 Ma, Taiwan had
280  become a major sediment source to the adjacent TWFB and the wider SCS, as a result of rapid uplift and intense

10
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281 erosion and southwestward collision-zone migration (Fig. 5; Hsieh et al., 2023b; Hu et al., 2022; Liu et al., 2010b).
282 This change in sediment provenance is tectonically driven and underscores the need to disentangle tectonic from
283 climatic signals in SCS sedimentary archives (Clift et al., 2014; Hsieh et al., 2024).

284 This diversity in sediment sources and mixing is reflected at ODP Sites 1146 and 1148, where the sediment records
285 diverge despite their spatial proximity. MAR, magnetic susceptibility, Hm/Gt and gamma-ray records diverge between
286 the two sites until ~3 Ma (Fig. 4). At ODP Site 1146, located on the continental slope, sediments are primarily derived
287 from Eurasia (Fig. 5). At Site 1146, major element and clay mineral compositions point to a mixture of sources
288 dominated by the Pearl River, with additional inputs from the Yangtze River, Taiwan, Luzon, and loess (Hu et al.,
289 2022; Liu et al., 2003; Wan et al., 2007a). Pearl River sediment discharge is controlled by long-term sea-level changes
290 and East Asian Monsoon variability (e.g., Liu et al., 2016), but its transport is strongly constrained: the northward-
291 flowing Kuroshio Current and shallow Taiwan Strait, limit delivery to the open basin, instead funnelling most material

292 along the continental shelf and slope via alongshore currents (Liu et al., 2010b; Liu et al., 2016; Wan et al., 2007a).
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294 Figure 5:Summary of different controls on sediment and carbon accumulation over time in the Taiwan Western Foreland
295 Basin (blue star) and the ODP sites (pink circles) in the northern South China Sea. The size of the arrows indicates relative

296 proportions of sediment flux, and green indicates accumulation of terrestrial organic carbon, while blue indicates marine
297 organic carbon. The abbreviations MT = Manilla Trench, RT = Ryukyu Trench, and PT = proto-Taiwan. These differences
298 in organic carbon source (i.e., terrestrial vs. marine) and carbon accumulation highlight the spatial heterogeneity in
299 sedimentary and geochemical records within the northern South China Sea, shaped by the interplay of tectonic and climatic

300 processes.

301 In contrast, ODP Site 1148, located on the continental rise, records a stronger Taiwanese imprint (i.e., less contribution

302 from Eurasia; Fig. 5). Prior to ~6.5 Ma, major element data suggest a mixture of Pearl River and Taiwan inputs, but

303 since the onset of Taiwan orogenesis (~6.5 Ma), Taiwanese material has increasingly dominated (Hu et al., 2022).
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304  Isotopic (¥Sr/*Sr, exg), and clay mineral records corroborate Taiwan as the dominant sediment contributor to the
305 northern SCS since its emergence (Bertaz et al., 2024; Boulay et al., 2005; Clift et al., 2014). This conclusion is also
306 supported by rare-earth element studies that attribute up to 80% of slope sediments to the Taiwan orogen, and < 20%
307 to the Pearl River (Shao et al., 2001; Shao et al., 2009). Erosion of modern and ancient Taiwan is primarily driven by
308 tropical-cyclone precipitation (Chen et al., 2010; Chien and Kuo, 2011; Dashtgard et al., 2021; Galewsky et al., 2006;
309 Janapati et al., 2019; Vaucher et al., 2021). Under warmer Pliocene climates (Fedorov et al., 2010; Yan et al., 2016)
310 such storms were likely more frequent and intense (e.g., Yan et al., 2019), and especially if coinciding with EASM
311 circulation, would have driven exceptionally high precipitation (Chen et al., 2010; Chien and Kuo, 2011; Kao and
312 Milliman, 2008; Lee et al., 2015; Liu et al., 2008) and sediment export (Vaucher et al., 2023b). Sediment derived from
313 Taiwan is subsequently redistributed into the northern SCS by downslope deep currents (Hu et al., 2012; Liu et al.,
314 2013; Liu etal., 2010b; Liu et al., 2016). The emergence of Taiwan also reconfigured regional circulation, establishing
315 a westward Kuroshio branch that delivered additional sediment from Taiwan and the Philippines (i.e., the Luzon Arc)
316 into the northern basin (Liu et al., 2016).

317 The difference in sediment provenance and transport pathways between the continental slope and continental rise is
318 reflected in the contrasting proxy trends observed at both ODP sites (Fig. 4). At ODP Site 1146, the long-term increase
319 in magnetic minerals since ~6.27 Ma reflects increased sediment input from Eurasia that is comparatively enriched in
320  magnetic minerals. Concurrently, low gamma-ray values and declining Ti/Ca until ~3 Ma also reflect increased
321 delivery of sand-rich, clastic detritus, while the decreasing Hm/Gt suggests a progressive weakening of the EASM
322 rainfall and seasonality. Together, these proxy signals are consistent with global trends of long-term cooling and
323 falling global mean sea level during this interval (Berends et al., 2021; Haq and Ogg, 2024; Haq et al., 1987; Holbourn
324 et al., 2021; Jakob et al., 2020; Miller et al., 2020; Rohling et al., 2014; Wan et al., 2007b; Westerhold et al., 2020),
325 as well as with evidence of diminished chemical weathering and progressive weakening of the EASM system (Clift,
326 2025; Clift et al., 2014; Li et al., 2004; Wan et al., 2006; Wan et al., 2010a; Wan et al., 2010b; Wang et al., 2019).
327  This interpretation is further supported by declining K/Al ratios observed at ODP Site 1146 between 5 and 3.8 Ma by
328 Tian et al. (2011), which likewise indicate reduced chemical weathering and a shift towards long-term drying.

329 At ODP Site 1148, MAR increases near the onset of Taiwan’s orogenesis (~5.4 Ma), reflecting enhanced sediment
330 export from rapid erosion the emerging orogen. An increase in magnetic susceptibility is also observed ~5.4—4.3 Ma
331 (Fig. 4), consistent with the erosion of passive-margin seafloor sediments enriched in magnetic minerals that was
332 uplifted during the early stages of Taiwan’s orogenesis (Hsieh et al., 2023b). After ~4.3 Ma, magnetic susceptibility
333 declines, coinciding with the deposition of the Yutengping Sandstone and increasing influx of sediment derived from
334 the metasedimentary core of Taiwan, which is comparatively depleted in magnetic minerals (Hsieh et al., 2023b).
335 Unlike Site 1146, the Hm/Gt record at Site 1148 does not appear to track long-term the monsoon drying. Rather, the
336 abrupt decrease in the Hm/Gt record at ~5.4 Ma is attributed to the influx of hematite-depleted sediment from Taiwan
337 as it emerged from the Pacific Ocean. The dispersal of Taiwan-sourced sediment into the northern SCS was facilitated
338 by deep-water currents and by the westward-flowing Kuroshio Branch, both of which developed following the
339 formation of the Taiwan and Luzon straits during orogenesis. Changes in ocean circulation during the early to middle

340  Pliocene are also captured by K/Al records, which show contrasting trends between intermediate water depths (e.g.,
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341 Site 1146) and deep water settings (e.g., Site 1148), which is interpreted as reflecting shifts in sediment dispersal
342 pathways to the northern SCS (Tian et al., 2011). The subsequent rise in Hm/Gt near ~3.2 Ma is attributed to the
343 northward remobilization of Taiwan-sourced sediment following the formation of Taiwan Warm Current (Fig. 3;
344 Hsieh et al., 2024). The gamma-ray record also tracks the orogenic evolution of Taiwan at both ODP sites (Fig. 4) and
345 parallels observations from the TWFB (Fig. 3): values are elevated during the deposition of mudstone-rich Shihliufen
346 Shale, decrease during formation of sand-dominated Yutengping Sandstone and rise again with the deposition of
347 mudstone-rich Chinshui Shale and Cholan Fm. The increase in sediment export from Taiwan is also reflected in the
348 Ti/Ca record, which increases after ~5.4 Ma, in response to intensified physical erosion and elevated terrestrial flux
349  linked to the onset of Taiwan orogenesis.

350  After ~3 Ma, the onset of Northern Hemisphere Glaciation (NHG) resulted in enhanced seasonality and an
351 intensification of the EASM (Fig. 5; Clift, 2025; Clift et al., 2014; Wan et al., 2006; Wan et al., 2007a; Wan et al.,
352 2007b). Although global cooling characterized the late Plio-Pleistocene (Lisiecki and Raymo, 2005), sea-surface
353 temperatures in the northwest Pacific remained sufficiently high (26.5-27.0°C) to sustain tropical cyclone activity
354 (Tory and Frank, 2010). This combined influence of intensified EASM and frequent tropical-cyclone precipitation
355 promoted elevated sediment production and large-scale export of fine-grained material enriched TOC from river
356  catchments into offshore depocenters. This is reflected in both sites by higher gamma-ray values, increased MAR, and
357 rising Ti/Ca ratios (Fig. 4). Enhanced seasonality is further expressed in the greater amplitude observed in gamma-

358 ray, Hm/Gt, and Ti/Ca records.

359 5.2 Influence of terrestrial sediment export vs. primary production on carbon burial

360 Organic carbon buried in the SCS can be broadly divided into two components: (1) terrestrial organic matter derived
361 from rock, soil, and terrestrial vegetation exported from adjacent landmasses by precipitation-driven erosion, and (2)
362  marine organic matter produced by primary productivity and exported to the seafloor.

363 At Site 1146, organic carbon accumulation, like bulk sediment accumulation, is primarily controlled by long-term
364 global sea-level fall associated with the onset and intensification of NHG (Fig. 5). Total organic carbon values are
365 closely coupled with MAR, with increases in sediment flux consistently accompanied by higher TOC concentrations
366 (Fig. 4). Although §'3Cqr, values show a modest decline between ~5.7 and 4.5 Ma, which is consistent with episodic
367 dilution by terrestrial organic inputs, values remain within the marine range (Table 1). The gradual increase in
368 terrestrial organic matter at ODP Site 1146 is interpreted to reflect increased Eurasian clastic influx under conditions
369  of long-term sea-level fall. The cross-plot of §'3Cor, and TOC also shows no distinct shift between organic matter
370 delivered to Site 1146 before and after the emergence of Taiwan. As sediment transported eastward from the Eurasian
371 margin would have longer residence times in the ocean, the dilution of land-derived organic material by marine organic
372 material would increase, resulting in a more marine 8'3Cory signature (Dashtgard et al., 2021) which supports the

373 interpretation that organic material is derived mainly from Eurasia via the Pearl River (Fig. 6).
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375 Figure 6: Cross-plot of '3Corg and TOC measured from ODP Sites 1146 and 1148. Values are grouped according to major
376 tectonic and climate changes: 1) pre-emergence of Taiwan and pre-Northern Hemisphere Glaciation, 2) post-emergence of
377 Taiwan and pre-Northern Hemisphere Glaciation, and 3) post-emergence of Taiwan and post-Northern Hemisphere

378 Glaciation. Note the distinct trends before and after Taiwan's emergence and Northern Hemisphere Glaciation. Site 1146
379 reflects Eurasian sediment input with marine organic matter dominance, while Site 1148 highlights Taiwan's influence,
380 with enhanced marine productivity linked to nutrient export.

381 In contrast, carbon burial at Site 1148 is primarily linked to the uplift and erosion of Taiwan and associated increase
382 in sediment and nutrient delivery to the marine environment (Fig. 5). The onset of orogenesis in Taiwan at ~5.5 Ma
383 coincides with a marked rise in MAR, followed by an increase in TOC beginning near ~4.9 Ma (Fig. 4). This pattern
384 indicates significant export of terrestrial sediment from the rapidly uplifting Taiwan orogen, a process further
385 amplified by the coupling between tropical cyclone and monsoon precipitation (Vaucher et al., 2023b). Notably, TOC
386 increases proportionally with MAR, implying that carbon burial was not diluted by high sediment flux but rather
387 enhanced by intensified sediment export, highlighting the role of Taiwan as a contributor of organic carbon in the
388 northern SCS. The influence of sedimentation from Taiwan on organic matter buried at Site 1148 is also evident from
389  the cross-plot between 3'*Corp and TOC, which shows a distinct increase in TOC prior to and after the emergence of
390 Taiwan (Fig. 6).

391 Taiwan’s steep topography and active tectonics generate exceptionally high sediment yields to adjacent marine
392 systems (Dadson et al., 2004; Dadson et al., 2003; Liu et al., 2013). Turbidity currents, especially via submarine
393 canyon systems (e.g., the Gaoping Submarine Canyon in southern Taiwan), efficiently transport organic-rich sediment
394 eroded from Taiwan to deep-sea environments approximately 260 km offshore into the northeastern Manila Trench
395 (Liu et al., 2009a; Liu et al., 2016; Nagel et al., 2018; Yu et al., 2009; Zheng et al., 2017). Within the TWFB, this
396 process is manifested as an abrupt increase in terrestrial organic matter and sand-rich deposition near ~4.9 Ma with
397 the emplacement of the Yutengping Sandstone (Fig. 4). At Site 1148, TOC increases markedly in association with the
398 emergence of Taiwan, and 8'C,, values remains stable above -25%o. While C4 plants are characterized by high §'3Cor,
399 values (Table 1), and an expansion of C4 plants in the South China region has been documented since 35 Ma (Li et
400 al., 2023; Xue et al., 2024), the organic carbon at Site 1148 are interpreted to be of marine in origin as C3 plants remain
401 the dominant vegetation type in the study area (Luo et al., 2024; Still et al., 2003; Wang and Ma, 2016). Furthermore,
402 sediment provenance markers (Section 5.1) indicate an influx of Taiwan-sourced material to Site 1148 after the
403 emergence of Taiwan, and 3'*Cqr, values in the TWFB reflect an increase in terrestrial organic matter. The presence
404 of Taiwan-sourced material combined with high proportions of marine organic carbon at Site 1148 suggests that

405 terrestrial organic matter from Taiwan was largely confined to proximal coastal environments, and that enhanced

15
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406 carbon burial in deeper settings reflects processes beyond direct terrigenous input. Likewise, terrestrial organic matter
407  contribution from the Pearl River into deeper-water depocenters is limited, as sediment is dispersed along the
408 continental shelf by alongshore currents (Liu et al., 2010b; Liu et al., 2016; Wan et al., 2007a). During transport and
409 sedimentation, degradation does not appear to significantly alter the isotopic composition of organic matter, since
410 there is little fractionation between reactants and products. If post-depositional alteration were a dominant control,
411 813Corg values should become progressively less negative with depth, as lighter isotopes are preferentially removed.
412 However, the §'3Corg records from the two sites show distinct trends, suggesting that the influence of post-depositional
413 isotopic fractionation is insignificant.

414 Taiwan’s rapid denudation delivers large quantities of sediment and nutrients to the northern SCS, profoundly shaping
415 basin productivity and carbon cycling. The export of bioessential nutrients stimulates intense coastal primary
416 production, as reflected by modern chlorophyll-a and nitrogen distributions that peak along Taiwan’s coast before
417 rapidly declining offshore due to swift uptake (Ge et al., 2020; Huang et al., 2020; Kao et al., 2006). Episodic inputs
418 from tropical cyclones, which contribute up to 80% of summer particulate organic carbon, further amplify productivity
419 and promote lateral dispersal of sediments (Liu et al., 2013). Marine organic matter produced through enhanced coastal
420 productivity could be redistributed by deep-water contour currents and mesoscale eddies, (Hsieh et al., 2024; Liidmann
421 et al., 2005; Zhang et al., 2014; Zhao et al., 2015), enabling its bypass into the deeper water depths and resulting in
422 the marine signature of the §'*Cor, records from the northern SCS,.

423 Fluvial input from Taiwan, especially via submarine canyon systems, makes the northern SCS a depocenter for organic
424 carbon burial, with important implications for the basin’s sedimentary architecture, long-term carbon budget, and even
425  hydrocarbon source rock potential (Kao et al., 2006). Paleoceanographic records indicate that productivity and organic
426 carbon burial increased during glacial periods (Thunell et al., 1992), likely driven by nutrient delivery from Taiwan’s
427 sediments that enhanced the biological pump and contributed to regional carbon drawdown. In the modern setting,
428 episodic sediment fluxes during typhoons sustain unusually high chlorophyll-a concentrations in deep SCS waters
429 relative to the global ocean (Shih et al., 2019). Moreover, northeast monsoon-driven mixing between the China Coastal
430 Current and Taiwan Strait Current, reinforced by sediment and nutrient inputs from Taiwan and the Yangtze River,
431 sustains elevated productivity in the northern SCS (Huang et al., 2020). Collectively, these processes highlight
432 Taiwan’s sediment flux as a key linkage between monsoon forcing, nutrient cycling, and primary production across

433 both modern and in the past.

434 5.3 Influence of climate and monsoon on carbon burial

435 In the TWFB, carbon geochemistry and gamma-ray data largely reflect the evolution of the foreland basin
436 synchronously with the shifts in the regional climate regime (Fig. 3). During the deposition of the Chinshui Shale in
437 the late Pliocene (~3.2 to 2.5 Ma), reconstructions for the northwest Pacific show relatively high global sea levels and
438 stable sea-surface temperatures (Berends et al., 2021; Li et al., 2011). Such conditions favoured the accumulation of
439 fine-grained sediment, while elevated sea levels deepened the TWFB and promoted offshore depositional
440 environments-both of which are expressed in the Chinshui Shale (e.g., Nagel et al., 2013; Vaucher et al., 2023b.

441 Greater water depths and increased distance from the terrestrial sediment sources also enhanced the relative
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442 contribution of marine organic matter. The gamma-ray record of the TWFB strata further reveals depositional cycles
443 related to interactions between EASM and tropical cyclone precipitation after ~4.92 Ma, with variability expressed at
444 both short-eccentricity and precession frequency bands (Hsieh et al., 2023a; Vaucher et al., 2023b).

445 During the early Pleistocene, with deposition of the Cholan Fm (~2.5-1.95 Ma), global sea level and regional sea-
446 surface temperatures became markedly more variable (Berends et al., 2021; Li et al., 2011). The continued uplift and
447 southwest migration of Taiwan promoted the development of shallow-marine depositional environments recorded in
448 the Cholan Fm (e.g., Pan et al., 2015; Vaucher et al., 2023a; Vaucher et al., 2023b; Vaucher et al., 2021). This is
449 expressed in the gamma-ray and carbon records as an increase in terrestrially sourced, sandstone-rich intervals with
450 high variability (Fig. 3). The enhanced in export of coarser-grained sediment from land to sea is likely related to the
451 onset of NHG, when repeated sea-level minima promoted clastic delivery to the basin (Vaucher et al., 2023b; Vaucher
452 et al., 2021). In addition, global climate deterioration related to NHG intensified and destabilised the EASM, which
453 would in turn increase sediment supply to the South China Sea (Wan et al., 2006; Wan et al., 2007a).

454 In the northern SCS, MAR and TOC values and amplitudes at both ODP sites increased after ~3 Ma, consistent with
455 increased sediment export (Fig. 4; Fig. 5). Paleoclimate reconstructions from East Asia likewise document a
456 strengthening of the EASM during the late Pliocene, generally near ~3.5 Ma (Hoang et al., 2010; Nie et al., 2014; Xin
457 etal., 2020; Yan et al., 2018; Yang et al., 2018; Zhang et al., 2009). While the causal relationship between monsoon
458 intensification and NHG remains debated (Nie et al., 2014; Wan et al., 2010b; Xin et al., 2020; Zhang et al., 2009),
459 long-term global cooling and sea-level fall coupled with intensified monsoon and tropical cyclone precipitation likely
460 acted together to amplify sediment export from land to sea (Vaucher et al., 2023b). At the same time, 5'*Cor, values
461 at ODP Site 1148 increases after ~3 Ma, suggesting increasing marine contribution to organic carbon. This trend is
462 attributed to enhanced marine primary production driven by nutrient enrichment. Independent evidence for increased
463 marine primary productivity in this interval comes from elevated abundances of planktonic foraminifera

464  Neogloboquadrina dutertrei and higher biogenic silica production (Wang et al., 2005b).

465 6 Conclusion

466  Analyses of late-Miocene to early Pleistocene sedimentary and geochemical records from shallow-marine strata of
467 the Taiwan Western Foreland Basin and deep-sea sediment cores from the northern South China Sea (SCS) provide
468 clear evidence for shifting pathways of carbon erosion, transport, and burial shaped by the interplay between tectonic
469 forcing, climate variability, and oceanographic processes.

470 Sediment provenance reveals marked spatial heterogeneity between the continental slope (ODP Site 1146) and the
471 continental rise (ODP Site 1148), highlighting the influence of tectonic uplift and evolving ocean circulation on
472 sediment mixing and deposition. Prior to ~5.4 Ma, sediment delivery to the northern SCS was dominated by Pearl
473 River discharge. Taiwan’s rapid emergence and erosion at ~5.4 Ma supplied large volumes of clastic material to the
474  basin, which is expressed in sediment provenance records at Site 1148, whereas Site 1146 remained strongly
475 influenced by Eurasian sources. Pearl River sediments were dispersed along the continental shelf and slope by
476 alongshore currents but were largely obstructed from reaching deeper water depths by the northward-flowing Kuroshio

477 Current and the shallow Taiwan Strait.
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478  The onset of Northern Hemisphere Glaciation (NHG; ~3 Ma) further amplified sediment erosion and export across
479 the basin. Long-term global cooling and sea-level fall, coupled with enhanced seasonality, drove the intensification of
480 the East Asian Summer Monsoon. The resulting increase in monsoon rainfall, as well as persistent tropical cyclone
481 activity, drove synchronous increases in mass-accumulation rate (MAR), magnetic susceptibility, and Ti/Ca values at
482 both ODP sites, demonstrating the strong climatic imprint on sediment export. In addition, slightly higher §'3Cor,
483 values after ~3 Ma indicate a greater marine contribution to organic matter, attributed to enhanced nutrient-driven
484  marine primary production.

485 Organic carbon burial likewise reflects the combined influence of tectonic and climate forcing. At ODP Site 1146,
486 total organic carbon (TOC) accumulation parallels MAR and is primarily controlled by long-term sea-level fall and
487  NHG intensification. 8'*Cory values indicate that the bulk of organic matter remained marine in origin, with minor
488 terrestrial contribution linked to Eurasian sediment export rather than to local tectonics. At ODP Site 1148, by contrast,
489  organic carbon burial is closely tied to the Taiwan’s uplift and erosion. Importantly, TOC scales proportionally with
490  MAR, implying that organic matter burial was enhanced—not diluted—by high sediment flux. Despite Taiwan’s steep
491 relief, rapid tectonic uplift, and frequent typhoon- and monsoon-driven erosion generating exceptional sediment
492 yields, 8'*Cqre values indicate that most buried organic was marine. This suggests that Taiwan’s erosion enhanced
493 nutrient supply, stimulating coastal primary productivity. Marine organic matter produced in these settings was then
494  redistributed offshore by turbidity currents through submarine canyon systems, bypassing the shelf and slope and
495 accumulating in deep-sea depocenters of the northern SCS.

496 Overall, this study highlights the importance of resolving spatial heterogeneities in sedimentary climate archives.
497 Disentangling the competing influences of tectonic and climate on sediment supply and carbon burial is critical for
498 robust intercomparison of paleoclimate records, and for reconciling apparent inconsistencies among proxy
499 reconstructions. Our findings also demonstrate that terrestrial sediment export contributes to carbon drawdown via
500 two distinct pathways: (1) direct burial of eroded terrestrial organic matter and (2) nutrient supply that fuels marine
501 primary production and subsequent burial of marine organic matter. This work establishes a direct link between the
502 tectonic evolution of an arc-continent collisional orogen and changes in carbon storage in adjacent basins, and
503 disentangles the mechanisms by which the erosion of mid-latitude orogens contributed to long-term carbon

504 sequestration.
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